Kiến thức căn bản về dao động điều hòa

Bài viết này xin giới thiệu với các em những kiến thức căn bản về dao động điều hòa thuộc chuyên đề dao động điều hòa. Hy vọng nó sẽ hữu ích với các em học lớp 12

Loading...

I. Thế nào là Dao động cơ?
Một vật được gọi là Dao động khi nó thỏa mãn:
• Vật đó phải chuyển động trong khoảng không gian có giới hạn
• Chuyển động của vật phải lặp đi lặp lại quanh một vị trí cân bằng

II. Thế nào là Dao động tuần hoàn?
Dao động của một vật mà sau những khoảng thời gian bằng nhau vật trở lại vị trí ban đầu và chuyển động đúng theo hướng cũ thì gọi gọi là dao động tuần hoàn

III. Thế nào là Dao động điều hoà
Dao động của một vật mà li độ của nó được mô tả bằng hàm sin hoặc cos theo thời gian thì gọi là dao động điều hòa
a) Phương trình dao động
phương trình x = Acos(ωt+ φ)
Giải thích:
• ω: Gọi là tần số góc của dao động.(rad/s)
• A: gọi là biên độ dao động: là li độ dao động cực đại ứng với cos(ωt+φ) =1.
• (ωt + φ): Pha dao động (rad)
• x: li độ của vật ở thời điểm t (tính từ VTCB)
• φ : pha ban đầu.(rad)
b) Tần số góc ω và mỗi liên hệ với các đại lượng khác
$ \omega = 2\pi f = \frac{{2\pi }}{T} = 2\pi .\frac{N}{t} $
• ω tần số góc (rad/s)
• f tần số (Hz)
• T chu kì (s)
• N là số dao động mà chất điểm thực hiện được trong thời gian t

c) Vận tốc
Phương trình: v = x’ = -Aωsin(ωt + φ),
• Tốc độ đạt giá trị lớn nhất v$_{max} $=Aω khi x = 0 (nghĩa là vật qua vị trí cân bằng).
• Tốc độ đạt giá trị lớn nhất vmin = 0 khi x = ± A ở vị trí biên

d. Gia tốc .
Phương trình: a = v’ = -Aω$^{2} $cos(ωt + φ)= -ω$^{2} $x
• Độ lớn gia tốc đạt giá trị lớn nhất |a|$_{max} $=Aω$^{2} $ khi x = ±A (vật ở vị trí biên)
• Độ lớn gia tốc đạt giá trị nhỏ nhất a = 0 khi x = 0 (VTCB) khi đó F$_{hl} $ = 0 .
– Gia tốc luôn hướng ngược dâu với li độ (Hay véc tơ gia tốc luôn hướng về vị trí cân bằng)

e) Đồ thị biểu diễn li độ, vận tốc, gia tốc

Đồ thị dao động điều hòa của x, v, a

Câu 1.
Trong các phương trình sau phương trình nào không biểu thị cho dao động điều hòa?
A. x = 5cos(πt) + 1(cm).
B. x = 3tcos(100πt + π/6)cm
C. x = 2sin2(2πt + π/6)cm.
D. x = 3sin(5πt) + 3cos(5πt) (cm).

Giải
– A. x = 5cosπt + 1 → x – 1 = 5cos(πt), nếu ta đặt X = x – 1 thì phương trình dao động của vật sẽ là X = 5cos(πt) cm → Thỏa mãn
– B. x = 3tcos(100πt + π/6)cm → A = 3t: không thỏa mãn
– C. $ x = 2{\sin ^2}\left( {2\pi t + \frac{\pi }{6}} \right) = 1 + \cos \left( {4\pi t + \frac{\pi }{3}} \right)cm $ →tương tự ý A → thỏa mãn.
– D. x = 3sin5πt + 3cos5πt = $ 3\sqrt 2 $cos(5πt – π/4) cm → Thỏa mãn
Chọn B.

Câu 2.
Vật dao động điều hòa với phương trình x = 40cos(20πt + π/3) (cm) (t đo bằng giây). Tìm biên độ dao động và pha ban đầu?
A. 20 cm và π/3 rad .
B. 80 cm và – π/6 rad.
C. 40 cm và π/3 rad.
D. π/3 cm và 40 rad.

Giải
Theo đề: x = 40cos(20πt + π/3) (cm) → A = 40 cm và φ = π/3 rad
Chọn C.

Câu 3.
Vật dao động  với phương trình x = 5cos(20πt – 3π/4) cm (cm) (t đo bằng giây). Tốc độ cực đại mà vật có thể đạt được?
A. 1 cm/s.
B. 5 cm/s.
C. π m/s.
D. 1 m/s.

Giải
Ta có: v = x’= – 100π.sin (20πt – 3π / 4) cm / s → vmax = 100π cm / s = π m / s.
Select C.

Câu 4.
Vật dao động với phương trình x = 4sin(20πt + 5π/6) cm (cm) (t đo bằng giây). Tìm li độ cực đại và tốc độ khi vật qua vị trí cân bằng?
A. 4 cm và 80π cm/s.
B. 0 cm và 80π cm/s.
C. 4 cm và 0 cm/s.
D. 4 cm và – 80π cm/s.

Giải
x = 4sin (20πt + 5π / 6) = 4cos (20πt + π / 3) cm → A = 4 cm
Ta có: v = x’= – 4.20π.sin (20πt + π / 3) cm / s → vmax = 80π cm / s
Select A.

Câu 5.
Một vật dao động điều hòa với x = 5cos(πt + π/2)cm, với x tính bằng cm và t tính bằng giây. Khi vật đi qua vị trí biên âm thì gia tốc của vật
A. – 5π2 m/ s$^2$ .
B. 5π cm/ s$^2$ .
C. 5π2 cm/ s$^2$ .
D. – 5π cm/ s$^2$ .

Giải
$ x = 5\cos \left( {\pi t + \frac{\pi }{2}} \right)\left( {cm} \right) \to a = – 5{\pi ^2}.\cos \left( {\pi t + \frac{\pi }{2}} \right)\left( {\frac{{cm}}{{{s^2}}}} \right) \to {a_{\max }} = 5{\pi ^2}\left( {\frac{{cm}}{{{s^2}}}} \right)$
Select C.

Câu 6.
Phương trình dao động có dạng x = – 2sin(πt – π/4) (trong đó x tính bằng cm và t tính bằng giây). Xác định pha ban đầu?
A. π rad.
B. 3π/4 rad.
C. π/4 rad.
D. – π/4 rad.

Giai
x = – 2sin (pt – p / 4) = 2sin (pt – p / 4 + n) = 2cos (pt – p / 4 + n – n / 2) = 2cos (pt + n / 4) cm
CHƠN C .

Câu 7.
Một vật dao động có phương trình vận tốc là v = – 6cos(0,25πt + π/3) (trong đó v tính bằng cm/ và t tính bằng giây). Xác định pha dao động li độ của vật vào thời điểm t = 4s?
A. 11π/6 rad.
B. 5π/6 rad.
C. – π/3 rad.
D. – 5π/6 rad.

Giải
x = Acos(ωt + φ) → v = x‘ = – Aωsin(ωt + φ) = = – Aωcos(ωt + φ – π/2) (*)
Từ dự kiện đề bài và (*), ta có: φ – π/2 = π/3 → φ = 5π/6 rad.
Vậy pha dao động của vật vào thời điểm 4 s: (ωt + φ) = 20πt.4 + 5π/6 = 11π/6 rad
Chọn A.

Câu 8.
Một chất điểm dao động có phương trình vận tốc là v = 4πcos(2πt) cm/s. Gốc tọa độ ở vị trí cân bằng. Mốc thời gian được chọn vào lúc chất điểm có li độ và vận tốc là
A. x = 2 cm và v = 0.
B. x = 0 và v = 4π cm/s.
C. x = – 2 cm và v = 0.
D. x = 0 và v = – 4π cm/s.
Giải
$ \left\{ \begin{array}{l}
x = A\cos \left( {\omega t + \varphi } \right)\\
v = – A\omega \sin \left( {\omega t + \varphi } \right) = A\omega c{\rm{os}}\left( {\omega t + \varphi + \frac{\pi }{2}} \right)
\end{array} \right. \to \left\{ \begin{array}{l}
\varphi = – \frac{\pi }{2}\left( {rad} \right)\\
A = 2cm
\end{array} \right. \to \left\{ \begin{array}{l}
x = 2\cos \left( {2\pi .0 – \frac{\pi }{2}} \right) = 0\\
v = 4\pi c{\rm{os}}\left( {2\pi .0} \right) = 4\pi \left( {\frac{{cm}}{s}} \right)
\end{array} \right. $
Chọn C.

Câu 9.
Vật dao động với phương trình: x = 20cos(2πt – π/12) (cm) (t đo bằng giây). Gia tốc của vật tại thời điểm t = 5/24 (s) là:
A. 2 m/ s$^2$ .
B. 9,8 m/ s$^2$ .
C. – 4 m/ s$^2$ .
D. 10 m/ s$^2$ .

Giải
$\left\{ \begin{array}{l}
x = A\cos \left( {\omega t + \varphi } \right)\\
v = – A\omega \sin \left( {\omega t + \varphi } \right) = A\omega c{\rm{os}}\left( {\omega t + \varphi + \frac{\pi }{2}} \right)
\end{array} \right. \to \left\{ \begin{array}{l}
\varphi = – \frac{\pi }{2}\left( {rad} \right)\\
A = 2cm
\end{array} \right. \to \left\{ \begin{array}{l}
x = 2\cos \left( {2\pi .0 – \frac{\pi }{2}} \right) = 0\\
v = 4\pi c{\rm{os}}\left( {2\pi .0} \right) = 4\pi \left( {\frac{{cm}}{s}} \right)
\end{array} \right.$
Select C.

Câu 10.
Một vật dao động với phương trình: x = 4cos(2πt – π/3) (cm) (t đo bằng giây). Vào thời điểm t = 2,5 s thì li độ và vận tốc của vật bằng
A. $ x = 2cm;\,v = 4\pi \sqrt 3 \frac{{cm}}{s}. $
B. $ x = 2cm;\,v = – 4\pi \sqrt 3 \frac{{cm}}{s}. $
C. $ x = – 2cm;\,v = – 4\pi \sqrt 3 \frac{{cm}}{s}. $
D. $ x = – 2cm;\,v = 4\pi \sqrt 3 \frac{{cm}}{s}. $

Giải
$ \left\{ \begin{array}{l}
t = 2,5\left( s \right)\\
x = 4\cos \left( {2\pi .t – \frac{\pi }{3}} \right)\\
v = – 2\pi .4\sin \left( {2\pi .t – \frac{\pi }{3}} \right)
\end{array} \right. \to \left\{ \begin{array}{l}
t = 2,5s\\
x = – 2cm\\
v = – 4\pi \sqrt 3 \frac{{cm}}{s}
\end{array} \right. $
Select C.

2 Comments

Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *